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A NEW METHOD FOR THE TRANSIENT SIMULATION OF CAUSAL

LINEAR SYSTEMS DIR3CRIBED IN THE FREQUENCY DOMAIN

Thomas J. Brazil

Department of Electronic& Electrical Engineering

University College, Dublin, Dublin 4, Ireland

A convolution-based method is described for the transient
analysis of causal linear systems. The main novelty lies in
the method proposed for computing discrete impulse
response samples, which possess excellent frequency

interpolation properties to the system function, even though

comparatively few samples are used. Convolution

operations are accordingly highly efficient, and results are

presented to validate the method in comparison to (a)

theoretical analysis, (b) SPICE simulation, and (c)

experimental step-response results for a lossy microstrip

filter. Extensions of the method to more general nonlinear

transient simulation are conceptually straightforward.

There is a continuing interest amoung the microwave CAD

community in the development of efficient numerical

procedures for the transient anrdysis of linear systems

subject to arbitrary excitation signals (e.g. [1]-[4]). A

standard technique in such cases is based on the Discrete

Fourier Transform (DFT), which is usually encountered in

the form of its efficient algorithmic implementation as the

Fast Fourier Transform (FFT). However, due to its

inherent periodicity, the DFT frequently has serious

limitations in practice, and may produce erroneous results
due to aliasing etc. if not used with some care [6].

The purpose of this contribution is to introduce a modified

mathematical transformation to interconnect the time and

frequency domains, which may still be implemented

numerically using the FFT algorithm, and provides a

powerful basis for addressing the transient analysis of both

purely-linear and mixed nonlincadlinear systems, provided

the usual physical condition of system causatity is satisfied.

The method described here enables a dramatic improvement

in the speed and accuracy of operations connecting the time-

domain and the frequency-domain, and leads to a versatile,

general-purpose method for performing the transient

analysis of causal linear systems.
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Transient Anrdvsis of Linear and Nonlinear Svstems

The transient analysis of linear systems arises in a variety of

contexts. In one type of situation, the terminating circuits

on the linear systems are themselves linear, and, for

example, the problem to be solved could involve a study of

the propagation of a digital pulse rdong lossy, dispersive,

and perhaps coupled, transmission line interconnects with

resistive terminations.

A second case is the familiar problem in nonlinear

microwave simulation in which it is required to amdyse an

interconnection of two sub-systems, one of which is most

usefully described in the time-domain (e.g. arising from

device large-signal models), while the other is most

naturally described in the frequency-domain (e.g. describing

the external circuit environment). Harmonic Balance [5] is

a powerful technique in such cases if the excitation signal is

periodic, while programs such as SPICE can handle the

transient analysis of certain types of idealised distributed

circuits, even though fairly inefficiently. However, it is

much more difficult to find a useful, general technique when

one desires the true transient response of a nonlinear system

with a realistic type of dMributed externrd circuit behaviour

with loss, dispersion, and so on.

For simplicity, the examples quoted in the following are

confined to purely linear systems, but the development of

the method presented here was originally motivated by the

requirements of mixed nonlincadlincar system simulation.

In fact, rdthough not described here, the method has also

been extensively tested in nonlinear simulation applications,

and extremely satisfactory results have been obtained.

The ProDosed Ar.mroach to the Tran sient Analv sis of Lkxar

SYSb2tm

In order to focus the discussion, we will consider the simple

example in Fig. 1, where it is assumed that the current

response is required for an arbitrary voltage excitation. A

value for the system function S1l(f) is assumed to be
available for any given frequency ‘ f‘, where the system

function is just the voltage reflection coefficient (referred to

‘Ro’):
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Fig. 1. l-Port Test Circuit

In the frequency domain:

V(f) –I(f). Ro = Su(f). [V(f) + I(f). Ro]

. ..(1)

If one wishes to compute i(t) for a given e(t), then samples

of e(t) may be transformed to E(f) using the DFT, followed

by a solution of the complex equation (1) together with

tirchhoff’s voltage law for the generator loop, yielding

values for I(f), and an inverse DFT may be used to produce

samples of i(t). This procedure is exact provided e(t) is

band-limited and sampled at least at its Nyquist frequency.

However, in many practical cases, e(t) is not band-limited

(e.g. it is a unit step), and in these cases application of the

DFT leads to aliasing errors which are difficult to quantify

and require large transform sizes for their minimisation.

Suppose now we take the inverse Fourier Transform of

E@(l):

v(t) – i(t). f?o= hn(t)* (v(t) + i(t). RO)

.!.(2)

where ‘*‘ indicates a convolution. If samples of the impulse

response function h 11(t) were available, the convolution

integral could be evaluated numerically, and approximate

sample values could then be obtained for i(t). The difficulty

is of course calculating h 11(t). Any attempt to bandlimit

S1l(f) in order to compute hl l(t) numerically, produces an

impulse response which is non-causal.

The approach adopted here begins with the amputation of

S11 (f) over some band [0, fro], where the source spectral

energy is assumed to be relatively small beyond fm. One

then forms the ~riodic extension of the function S11(f) over
the entire frequency axis. For the present, let us assume

that S11(f) has zero imaginary part at f = fm, so that when
S1l(f), together with its Hermitean part defined for [-fro,
O], is periodically extended, it forms a smooth, complex-
valued function with period [2. fm]. (If the zero imaginary
part condition is not met, a uniform delay can be introduced
to achieve it, the effect of which may be readily removed
later through a simple shift operation in the time-domain).

From signal processing theory, it is known that the impulse

response function now becomes truly a discrete (real-valued)

function, and the convolution integrals in Eq. (2) are then

-y replaceable by summations. In principle, the impulse

response values may be determined by a Fourier Series

operation on the periodic system function, however this

provides impulse response values for both negative time and

positive time. The novelty in the method proposed here

centres on the observation that for a causal system function,

the red and imaginary parts are related by a Hilbert

transform, and the impulse response is zero-valued for

negative time. These conditions are now forced in the

following transform pair, which are proposed as a

replacement for the standard Fourier Series approach:

SU(@) = ~ hu(n!Z’). exp[-jn~]

n-o

... (3)

where T = 1 / ( 2. fm ). The detailed justification for this
transform pair is not given here for lack of space, but this
formulation is the key to the method proposed. In practical
implementation, the integral in Eq. (3) must be evahtated
numerically from samples of S11(f), however, both forward
and reverse transforms may be readily evaluated using an
FFT formulation, after appropriate manipulations have been
carried out.

The crucial question then becomes related to the

interpolation properties of the impulse response samples

generated, i.e. for a given finite number of samples ‘N’,

how well does the summation in Eq. (3) describe the original

system function between sample points? For example, it is

well known from digital filter design, that the interpolation

behaviour of the DFT between sample points is often very

poor in practice. However, a remarkable property of the

transform pair given in Eq.(3) is that the interpolation

properties of the impulse response samples are extremely

good, and surprisingly small numbers of samples (typically

of the order of 100 or less) are sufficient to describe even

highly-complex system function behaviour with excellent

accuracy over a wide frequency range. This in turn makes

the computation of the involutions such as in Eq, (2) above

very economical, and leads to a highly efficient method for

the transient simulation of system response for essentially

arbitrary excitation waveforms, It should be clear that the

extension of this procedure to mixed nonlinear / linear

simulation is quite straightforward.
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Examdes of Amzlication!i

Numerous exercises have been carried out to vali&te and

test the capabilities of the above method for the transient

analysis of linear systems and only a few examples are

presented in the following:

(a) Pulse Response of Short-Circuitcxl Lossless Line

This example was given recently by Griffith ad Nakhla

[4], and is effectively the circuit of Fig. 1, with Rs = O,
and the linear 1-port in the simple form of a lossless, short-
circuited l-ohm line with a time delay of 1 sec. The

transient input current is sought in response to a unit voltage
pulse excitation of 3 sec. duration. Figure 2 shows the
exact result, together with results from both the method in
[4] based on a numerical inversion of the Laplace
Transform, and the convolution method given here. As
discussed in [4], this example is not readily solved by DFT

techniques, but it is clear that the present method gives

results which are in almost perfect agreement with the exact

solution.

Fig.2 PulseResponseof Short-circuited Line
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(b) Step-Response of a Lossy Microstrip Low-Pass Filter

The equivalent circuit of this filter is given in Fig. 3(a), and

since the filter was realised in practice on glass-epoxy

board, the transmission lines are modelled with significant

loss and dispersion. Figure 3(b) shows the impulse response

samples computed from S21(0 using the method described

here, and Fig. 3(c) indicates the excellent interpolation

properties of these samples in the continuous-frequency

domain, even though only 64 values are being used.

Fig. 3(b] ImpufeeResponseSamples[S21(f)]
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Fig.3[c] Interpolation Propertie9 of Impulse
ResponseSompleefor Loeey Microstrip Filter

o.m

,-CJ

.

-50.00
O.m 0.25 0.5U 0.75 100 1.25 1.50 1.75 2.00 2.25 250

Frsquency[GHZ]

Figure 4 (a) shows the voltage step response at the input

computed both using the method given here, and using the

SPICE program, but assuming zero transmission line loss

and dispersion in each case. An open-circuit load condition

is assumed, and the step rise-time is 40 psec. Excellent

agreement is obtained, ahhough it should be noted that the

computer time required by the present method is more than

8 times less than that required by SPICE. Finally, Fig. 4

(b) shows a comparison between the results of a convolution

analysis including loss and dispersion, and the experimental

step response determined using a HP 54123T 34-GHz

oscilloscope system. The simulated results in this case are

seen to be in very good agreement with measured results

from the fabricated filter.
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Fig. 3(a) MicroStrip Low-Pass Filter
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Fig. 4[a] Step Responseof LosslessL.P. Filtec
SPICEond ConvolutionAnolysisCompared
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Fig. 4[b] MeosuredStep Responseof Filter
Comporedto ConvolutionAnalysis [with Lose)

Time (nsec]

Conclusions

A convolution-based method has been described for the
transient analysis of causal linear systems. The main
novelty is in the method for computing discrete impulse
response samples, which give excellent frequency
interpolation capabilities with respect to the originrd system
function, even though comparatively few samples are used.

Convolution operations are accordingly highly efficient, and

results have been presented to validate the method both in

comparison to theoretical analysis, an existing simulation

program (SPICE), and experimental results from a lossy

microstip filter.
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