00-7

A NEW METHOD FOR THE TRANSIENT SIMULATION OF CAUSAL

LINEAR SYSTEMS DESCRIBED IN THE FREQUENCY DOMAIN

Thomas J. Brazil

Department of Electronic & Electrical Engineering
University College, Dublin, Dublin 4, Ireland

Abstract

A convolution-based method is described for the transient
analysis of causal linear systems. The main novelty lies in
the method proposed for computing discrete impulse
response samples, which possess excellent frequency
interpolation properties to the system function, even though
comparatively few samples are used. Convolution
operations are accordingly highly efficient, and results are
presented to validate the method in comparison to (a)
theoretical analysis, (b) SPICE simulation, and (c)
experimental step-response results for a lossy microstrip
filter. Extensions of the method to more general nonlinear
transient simulation are conceptually straightforward.

Introduction

There is a continuing interest amoung the microwave CAD
community in the development of efficient numerical
procedures for the transient analysis of linear systems
subject to arbitrary excitation signals (e.g. [11-[4]). A
standard technique in such cases is based on the Discrete
Fourier Transform (DFT), which is usually encountered in
the form of its efficient algorithmic implementation as the
Fast Fourier Transform (FFT). However, due to its
inherent periodicity, the DFT frequently has serious
limitations in practice, and may produce erroneous results
due to aliasing etc. if not used with some care [6].

The purpose of this contribution is to introduce a modified
mathematical transformation to interconnect the time and
frequency domains, which may still be implemented
numerically using the FFT algorithm, and provides a
powerful basis for addressing the transient analysis of both
purely-linear and mixed nonlinear/linear systems, provided
the usual physical condition of system causality is satisfied.
The method described here enables a dramatic improvement
in the speed and accuracy of operations connecting the time-
domain and the frequency-domain, and leads to a versatile,
general-purpose method for performing the transient
analysis of causal linear systems.
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Transient Analysis of Linear and Nonlinear Systems

The transient analysis of linear systems arises in a variety of
contexts. In one type of situation, the terminating circuits
on the linear systems are themselves linear, and, for
example, the problem to be solved could involve a study of
the propagation of a digital pulse along lossy, dispersive,
and perhaps coupled, transmission line interconnects with
resistive terminations.

A second case is the familiar problem in nonlinear
microwave simulation in which it is required to analyse an
interconnection of two sub-systems, one of which is most
usefully described in the time-domain (e.g. arising from
device large-signal models), while the other -is most
naturally described in the frequency-domain (e.g. describing
the external circuit environment). Harmonic Balance [5] is
a powerful technique in such cases if the excitation signal is
periodic, while programs such as SPICE can handle the
transient analysis of certain types of idealised distributed
circuits, even though fairly inefficiently. However, it is
much more difficult to find a useful, general technique when
one desires the true transient response of a nonlinear system
with a realistic type of distributed external circuit behaviour
with loss, dispersion, and so on.

For simplicity, the examples quoted in the following are
confined to purely linear systems, but the development of
the method presented here was originally motivated by the
requirements of mixed nonlinear/linear system simulation.
In fact, although not described here, the method has also
been extensively tested in nonlinear simulation applications,
and extremely satisfactory results have been obtained.

The Proposed Approach to the Transient Analysis of Lin
Systems

In order to focus the discussion, we will consider the simple
example in Fig. 1, where it is assumed that the current
response is required for an arbitrary voltage excitation. A
value for the system function S11(f) is assumed to be
available for any given frequency 'f', where the system
function is just the voltage reflection coefficient (referred to
‘Ro'):
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Fig. 1. 1-Port Test Circuit

In the frequency domain:

V(£)—I(£).Ry = S11(£).[V(£) + I(£).R,]

(D

If one wishes to compute i(t) for a given e(t), then samples
of e(t) may be transformed to E(f) using the DFT, followed
by a solution of the complex equation (1) together with
Kirchhoff's voltage law for the generator loop, yielding
values for I(f), and an inverse DFT may be used to produce
samples of i(t). This procedure is exact provided e(t) is
band-limited and sampled at least at its Nyquist frequency.
However, in many practical cases, e(t) is not band-limited
(e.g. it is a unit step), and in these cases application of the
DFT leads to aliasing errors which are difficult to quantify
and require large transform sizes for their minimisation.

Suppose now we take the inverse Fourier Transform of

Eq.(1):

v(t) — i(t). R, = hy(t)* (v(t) + i(t). Ry)

«.(2)
where '*' indicates a convolution. If samples of the impulse
response function hll(t) were available, the convolution
integral could be evaluated numerically, and approximate
sample values could then be obtained for i(t). The difficulty
is of course calculating h11(t). Any attempt to bandlimit
S11(f) in order to compute h11(t) numerically, produces an
impulse response which is non-causal.

The approach adopted here begins with the computation of
S11(f) over some band [0, fm], where the source spectral
energy is assumed to be relatively small beyond fm. One
then forms the periodic extension of the function S11(f) over
the entirc frequency axis. For the present, let us assume
that S11(f) has zero imaginary part at f = fm, so that when
S11(f), together with its Hermitean part defined for [-fm,
0], is periodically extended, it forms a smooth, complex-
valued function with period {2.fm]. (If the zero imaginary
part condition is not met, a uniform delay can be introduced
to achieve it, the effect of which may be readily removed
later through a simple shift operation in the time-domain).
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From signal processing theory, it is known that the impulse
response function now becomes truly a discrete (real-valued)
function, and the convolution integrals in Eq.(2) are then
exactly replacable by summations. In principle, the impulse
response values may be determined by a Fourier Series
operation on the periodic system function, however this
provides impulse response values for both negative time and
positive time. The novelty in the method proposed here
centres on the observation that for a causal system function,
the real and imaginary parts are related by a Hilbert
transform, and the impulse response is zero-valued for
negative time. These conditions are now forced in the
following transform pair, which are proposed as a
replacement for the standard Fourier Series approach:

om/2%
hy(nT) = z. an(w). exp{+jnar]. dw
27 -wmf2x

Sp(w) = Zhn(nT). exp[-jnaeT]
=0

. (3

where T = 1/ (2.fm ). The detailed justification for this
transform pair is not given here for lack of space, but this
formulation is the key to the method proposed. In practical
implementation, the integral in Eq.(3) must be evaluated
numerically from samples of S11(f), however, both forward
and reverse transforms may be readily evaluated using an
FFT formulation, after appropriate manipulations have been
carried out.

The crucial question then becomes related to the
interpolation properties of the impulse response samples
generated, i.e. for a given finite number of samples 'N',
how well does the summation in Eq.(3) describe the original
system function between sample points? For example, it is
well known from digital filter design, that the interpolation
behaviour of the DFT between sample points is often very
poor in practice. However, a remarkable property of the
transform pair given in Eq.(3) is that the interpolation
properties of the impulse response samples are extremely
good, and surprisingly small numbers of samples (typically
of the order of 100 or less) are sufficient to describe even
highly-complex system function behaviour with excellent
accuracy over a wide frequency range. This in turn makes
the computation of the convolutions such as in Eq.(2) above
very economical, and leads to a highly efficient method for
the transient simulation of system response for essentially
arbitrary excitation waveforms. It should be clear that the
extension of this procedure to mixed nonlinear / linear
simulation is quite straightforward.



Examples of Applications

Numerous exercises have been carried out to validate and
test the capabilities of the above method for the transient
analysis of linear systems and only a few examples are
presented in the following:

(@) Pulse Response of Short-Circuited Lossless Line:

This example was given recently by Griffith and Nakhla
[4], and is effectively the circuit of Fig. 1, with Rs = 0,
and the linear 1-port in the simple form of a lossless, short-
circuited 1-ohm line with a time delay of 1 sec. The
transient input current is sought in response to a unit voltage
pulse excitation of 3 sec. duration. Figure 2 shows the
exact result, together with results from both the method in
[4] based on a numerical inversion of the Laplace
Transform, and the convolution method given here, As
discussed in [4], this example is not readily solved by DFT
techniques, but it is clear that the present method gives
results which are in almost perfect agreement with the exact
solution.

Fig. 2 Pulse Response of Short-Circuited Line
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(b) Step-Response of a Lossy Microstrip Low-Pass Filter

The equivalent circuit of this filter is given in Fig. 3(a), and
since the filter was realised in practice on glass-epoxy
board, the transmission lines are modelled with significant
loss and dispersion. Figure 3(b) shows the impulse response
samples computed from S21(f) using the method described
here, and Fig. 3(c) indicates the excellent interpolation
properties of these samples in the continuous-frequency
domain, even though only 64 values are being used.

Fig. 3{b] Impulse Response Samples {S21(}]
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Fig. 3(c) Interpolation Properties of Impylse
Response Samples for Lossy Microstrip Filter
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Figure 4 (a) shows the voltage step response at the input
computed both using the method given here, and using the
SPICE program, but assuming zero transmission line loss
and dispersion in each case. An open-circuit load condition
is assumed, and the step rise-time is 40 psec. Excellent
agreement is obtained, although it should be noted that the
computer time required by the present method is more than
8 times less than that required by SPICE. Finally, Fig. 4
(b) shows a comparison between the results of a convolution
analysis including loss and dispersion, and the experimental
step response determined using a HP 54123T 34-GHz
oscilloscope system. The simulated results in this case are
seen to be in very good agreement with measured results
from the fabricated filter.

Fig. 3(a)
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Fig. 4(a) Step Response of Lossless L.P. Filter:
SPICE ond Convolution Anolysis Compared
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Conclusions

A convolution-based method has been described for the
transient analysis of causal linear systems. The main
novelty is in the method for computing discrete impulse
response samples, which give excellent frequency
interpolation capabilities with respect to the original system
function, even though comparatively few samples are used.
Convolution operations are accordingly highly efficient, and
results have been presented to validate the method both in
comparison to theoretical analysis, an existing simulation
program (SPICE), and experimental results from a lossy
microstrip filter.
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